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Benjamin–Feir instability of nonlinear gravity–capillary waves is studied experiment-
ally. The experimental results are compared with computations performed for values
of wavelength and steepness identical to those employed in the experiments. The
theoretical approach is based on the Zakharov nonlinear equation which is modified
here to incorporate weak viscous dissipation. Experiments are performed in a wave
flume which has an accurately controlled wavemaker for generation of the carrier
wave, as well as an additional independent conical wavemaker for generation of
controlled three-dimensional disturbances. The approach adopted in the present ex-
perimental investigation allows therefore the determination of the actual boundaries
of the instability domain, and not just the most unstable disturbances. Instantaneous
surface elevation measurements are performed with capacitance-type wave gauges.
Multipoint measurements make it possible to determine the angular dependence of
the amplitude of the forced and unforced disturbances, as well as their variation along
the tank. The limits of the instability domains obtained experimentally for each set of
carrier wave parameters agree favourably with those computed numerically using the
model equation. The numerical study shows that application of the Zakharov equa-
tion, which is free of the narrow-band approximation adopted in the derivation of
the nonlinear Schrödinger (NLS) equation, may lead to qualitatively different results
regarding the stability of nonlinear gravity–capillary waves. The present experiments
support the results of the numerical investigation.

1. Introduction
Gravity–capillary water waves in the ocean play an important role in the wave

energy transfer across the spectrum. Moreover, surface waves in this range are directly
responsible for Bragg backscattering of incident electromagnetic waves by the ocean,
which is the dominant mechanism for remote sensing of the ocean surface by airborne
and spaceborne radars. Of particular interest in this respect is synthetic aperture radar
(SAR), which in recent decades has become a major instrument in studies of the
ocean surface due to its large coverage, high resolution and independence of weather
conditions. The basic principles of SAR imagery of the ocean surface are now well
understood (Hasselmann et al. 1985). The important parameter which determines
the limits of the spatial resolution of SAR images is the so-called scene coherence
time (Tucker 1985; Shemer & Marom 1993), which strongly depends on the stability
of the resonating backscattering Bragg waves. Detailed knowledge of the stability
characteristics of gravity–capillary waves is therefore important in determination of
the relative advantages of imaging radars with various electromagnetic wave bands.
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The role of gravity–capillary waves in the remote sensing of the ocean surface partially
motivated this study. The present investigation, however, is restricted to the stability
of those waves due to nonlinear interactions.

For surface gravity–capillary waves, resonant or near-resonant interactions become
possible for at least four waves (Class I interactions), although McGoldrick (1965)
has shown that for very short ripples, which are strongly affected by surface tension,
triad resonant interactions are possible. The particular case of quartet interactions, in
which one of the waves (carrier) is taken twice, so that only three waves are actually
considered, has attracted much attention. These interactions lead to instability of a
monochromatic Stokes wave through sideband disturbances and were theoretically
discovered by Benjamin & Feir (1967), although Lighthill (1965) was the first to
indicate that a uniform wave train is unstable.

In a seminal paper Zakharov (1968) presented a Hamiltonian description of the
water waves problem. The Hamiltonian approach adopted in that study is used as a
basis for the stability analysis of surface gravity waves using the nonlinear Schrödinger
(NLS) equation. The NLS equation was derived by Zakharov as a particular case
of the general integro-differential equation describing the temporal evolution of a
four-wave field in Fourier space, the so-called Zakharov equation. The NLS equation,
which describes the evolution of nonlinear gravity waves in physical space, is obtained
from the Zakharov equation for a narrow wave packet.

Djordjevic & Redekopp (1977) expanded the range of applicability of the NLS
equation to shorter gravity–capillary waves. For two-dimensional disturbances, i.e.
those propagating in the direction of the carrier, the NLS equation allows one
to determine the wavenumber range of the unstable perturbations (Djordjevic &
Redekopp 1977; Yuen & Lake 1982). The stability analysis based on the NLS
equation performed by Djoerdjevic & Redekopp indicated that there exists a range
of wavelengths where gravity–capillary waves are stable to sideband disturbances.
The Zakharov equation enables one to study the stability of steady gravity waves
of finite amplitude to three-dimensional disturbances (Zakharov 1968; Crawford et
al. 1981). McLean et al. (1981) and McLean (1982) studied this problem by solving
numerically the complete governing equations. They uncovered the existence of an
additional instability domain, dubbed Class II instability, which results from five
waves, or quintet interaction, and is essentially three-dimensional. Class II instability
may become dominant at high wave amplitudes. Stiassnie & Shemer (1984) and
Shemer & Stiassnie (1985) studied the stability problem using the modified Zakharov
equation, extended to the next, fourth, order in wave steepness ε, which is the small
parameter of the problem. The comparison of the instability domains obtained in
these studies with the exact numerical results of McLean et al. and McLean for both
quartet interaction of Class I (of the order ε3), and quintet interactions of Class II
(of the order ε4), indicates that the model is quantitatively correct as long as wave
amplitudes do not exceed about one-half of the theoretical maximum. For extremely
steep waves, the model becomes less accurate, while still predicting correctly the
general qualitative features. Gruman (1987) derived a modification of the Zakharov
equation which describes the triad (order ε2) interactions of the capillary and gravity–
capillary ripples.

Recently, it was stated that various derivations of the Zakharov equation and its
modifications (Zakharov 1968; Yuen & Lake 1982; Stiassnie & Shemer 1984) cannot
be rigorously justified (Krasitskii & Kalmykov 1993; Krasitskii 1994; Glozman 1994).
Using the Hamiltonian formalism, alternative (and considerably more complicated)
model equations were derived in these studies. Although the question regarding the
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applicability of the simpler Zakharov equation to the study of the nonlinear dynamics
of water waves thus remains open, the aforementioned reasonable quantitative agree-
ment between the results obtained using this equation with the exact computations of
McLean indicates that the Zakharov equation can be quite useful for investigations of
certain properties of nonlinear water waves. Conclusions regarding the limits of appli-
cability of the Zakharov equation can be drawn, at least partially, by comparing the
theoretical predictions obtained by application of this equation with the experimental
results.

The first experimental evidence for the existence of third-order resonant interactions
was presented by McGoldrick et al. (1966). These experiments were restricted to
orthogonal wave trains. Benjamin (1967) reported some experimental evidence for
the sideband instability due to these interactions. More detailed comparison of the
experimental data with the theory of Benjamin & Feir (1967) was performed by Lake
& Yuen (1977). The spatial growth of the two sidebands of Benjamin–Feir instabilities
of relatively long (of the order of 1 m) steep waves in a basin was observed by Su
et al. (1982). Melville (1982, 1983) studied experimentally the evolution of unstable
steep wave trains and their breaking. His results were in general agreement with
Lake & Yuen (1977) and McLean (1982). Theoretical analysis of the stability of
very short ripples was carried out by Zhang & Melville (1987), while experiments
on triad interactions of short ripples were performed by Henderson & Hammack
(1987) and by Perlin, Henderson & Hammack (1990). In these studies, in addition to
conventional measurements by wave gauges, a video imaging technique was used to
study two-dimensional wave vector spectra. This approach was also applied by Perlin
& Hammack (1991) for studies of quartet interactions of gravity–capillary waves.

All theoretical studies of the sideband instability due to the resonant quartet
(Class I) interactions indicate that while three-dimensional unstable disturbances
exist, the most unstable sideband disturbances for deep gravity surface waves are
two-dimensional, i.e. propagate in the direction of the carrier. This is in contrast
to the quintet (Class II) interaction, which are strongly three-dimensional (McLean
1982; Stiassnie & Shemer 1984). It should be noted, however, that for short gravity–
capillary ripples, the direction of the most unstable sidebands deviates from that of
the carrier (Gruman 1987).

In the present investigation we perform a quantitative experimental study of the in-
stability domains of gravity–capillary waves. Measurements are performed for a num-
ber of wavelengths and wave steepnesses. The wave-tank study is based on theoret-
ical results obtained by applying the Zakharov equation. In contrast to previous
experiments on surface wave instabilities, an artificially controlled disturbance, in-
dependent of the carrier, is introduced by an additional wavemaker. It should be
stressed that while the theoretical analysis is based on the Hamiltonian approach,
water waves observed in any real experiment represent a non-conservative system. To
perform a quantitative comparison of the experimental results with the theoretical
predictions and to estimate the role of weak dissipation, effects due to water viscosity
should be incorporated into the model which originally was derived for potential flow.
Viscous damping was recently introduced phenomenologically by Chow, Henderson
& Segur (1996) as a correction to a system of ODEs describing a Hamiltonian system
which admits three-wave interactions.

The present study is however restricted to longer gravity–capillary waves, for which
the lowest possible nonlinear interactions occur for four waves (Class I, or quartet
interactions). Ruvinski, Feldstein & Freidman (1986, 1991) presented a derivation
of the boundary conditions at the free surface of the potential flow in the presence
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Figure 1. The experimental facility.

of weak damping. Longuet-Higgins (1992) corroborated the results of Ruvinski et
al. using a more straightforward approach. These modified boundary conditions
are used in the present study to incorporate weak dissipation quantitatively in the
Zakharov equation for various gravity–capillary wavelengths and amplitudes. The
resulting equation therefore allows us to estimate the effect of viscosity on the
instability domains of weakly nonlinear waves. The instability domains for a number
of gravity–capillary wavelengths and amplitudes were computed using the model
equation developed. The experiments were then carried out for wave parameters
identical to those used in the computations. The quantitative comparison of the
theoretically obtained instability domains with the experimental observations enables
also an evaluation of the applicability of the Zakharov equation to the study of
stability of weakly nonlinear gravity–capillary waves. The additional motivation for
the present study is therefore the need for experimental confirmation of the results
derived by solving the Zakharov equation.

2. The experimental set-up
The experiments are performed in a flume 1.7 m long, 0.7 m wide and 0.4 m high. A

schematic view of the experimental facility is given in figure 1. The flume, supported
by a steel frame, has 8 mm thick glass sidewalls, while the bottom is made of 2 cm
thick Perspex sheet. The carrier wave is excited by a paddle-type wavemaker located
at one end of the tank. The 10 mm thick Perspex paddle spans the tank and is 69.5 cm
wide, hinged 5 cm above the tank floor. The gap between the wavemaker and tank
walls is 2.5 mm at each side. The wavemaker is driven by a servo-controlled 180 W
AC motor. The motor rotation is transferred to the paddle using a 1: 4 reducing gear
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box and an assembly that has variable eccentricity. The frequency of the carrier wave
forcing is stable and can be continuously varied in the range from about 6 to 15 Hz.
The frequency range was selected so that the carrier waves were long enough to
remove the possibility of resonant triad interactions, yet sufficiently short compared
to the size of the experimental facility. The desired wave amplitude can be fixed by
varying either the eccentricity of the drive or the water depth in the tank.

In addition to this principal wavemaker, the facility is equipped with an auxiliary
wavemaker for the excitation of the sideband disturbances. The auxiliary wavemaker
is made of a 10◦ plastic cone immersed in the water which oscillates vertically, thus
producing an axisymmetric wave field. This wavemaker is positioned at least 20 cm
from the nearest sidewall and from the principal wavemaker, in order to eliminate
the effect of wave reflection. The wavemaker is driven by a separate motor identical
to that used for carrier wave production. No reducing gear box is used for the
disturbance-generating wavemaker. The supports for both motors and their control
units are isolated from the wave flume frame in order to eliminate vibration transfer. A
wave absorption device is located at the downstream end of the flume. The secondary
wavemaker allows one to excite controlled disturbance with the desired frequency,
and thus enables the study of the whole range of the carrier wave instability, and
not just the most unstable mode. In addition, the conical shape of the secondary
wavemaker allows one to determine experimentally the angular behaviour of the
unstable disturbances.

The tank is filled with filtered tap water. The filtering is as follows. First, relatively
large solid particles are removed by a 15µm filter. Organic substances are then
removed by an active carbon filter, thus eliminating the possibility of elastic surfactant
films on the surface. Finally, fine particles are removed by two additional filters, 1 µm
and 0.2 µm. The tank is thoroughly cleaned at the beginning of each set of experiments
and fresh water is added. The water depth in the tank is 10–15 cm, satisfying deep
water condition for the waves studied in the present experiments. The maximum
water depth and wave amplitude are limited by the appearance of cross-waves at the
wavemaker excited by parametric resonance at the subharmonic frequency (Kit &
Shemer 1989a).

The instantaneous surface elevation is measured by one or more capacitance-type
wave gauges. The probes were made of 0.6 mm tantalum wire which underwent
an anodizing procedure to uniformly coat it with a thin dielectric tantalum oxide
layer. The wire coating technology is described in Chapman & Monaldo (1995). The
electronic circuitry is based on the design of Chapman & Monaldo, as well. Since their
original instrument was aimed at field measurements in the ocean, the electronics are
modified considerably to ensure the necessary sensitivity and frequency response, as
well as to eliminate cross-talk between the different channels. Up to five wave gauges
could be used simultaneously. More details about wave gauges and electronics used
in the present study are given in Chamesse (1997).

The effective surface tension in the tank is determined on the basis of the dispersion
relation for gravity–capillary waves. Simultaneous measurements of wave frequency
and phase velocity are performed, using four wave gauges located at known positions
along the tank (Chamesse 1997). The effective value of the surface tension coefficient
obtained in these measurements is 70 dynes cm−1. This value of the surface tension
coefficient is therefore adopted in the present study.

The gauges are calibrated in situ using a stepping motor and a computerized
static calibration procedure, as described in detail in Shemer, Kit & Miloh (1987).
The calibration is performed at the beginning of each experimental run. Eleven
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data points sampled with an increment of 0.4 mm are obtained in the calibration
procedure, thus covering the range of ±2 mm, appropriate for the wave amplitudes
encountered in this study, the mean depth of the probe immersion was about 1 cm.
For the range of surface elevations observed in this study, the response of the system
is found to be linear, and the calibration coefficients are computed for each gauge
using the least-squares procedure. To ensure that no variations in the probe response
occurred in the course of an experiment, the calibration procedure is repeated after
the conclusion of each experimental run. If the new calibration coefficients proved to
be notably different from the original ones, the results obtained in this particular run
were rejected.

In the present experiments, amplitudes of relatively high-frequency gravity–capillary
waves (up to 15 Hz) are measured. To verify the appropriate frequency response of
the wave gauges, dynamic calibration is performed. In this procedure, the assembly
of the secondary conical wavemaker is employed. The gauges replace the wavemaker
cone and are oscillated in the vertical direction with constant amplitude. The wave
gauges response as a function of the forcing frequency is found to be flat for all
frequencies below about 20 Hz. The low-pass filter of the electronic circuit of the
wave gauges is therefore set at 20 Hz. It should be noted that conclusions based on
this type of dynamic calibration may not be quite adequate for propagating short
waves. The results of a careful investigation by Sturm & Sorrell (1973) who compared
the performance of the wire wave gauges with optical measurements indicate that even
for the highest wave frequencies studied here, the gauge-measured wave amplitudes
remain sufficiently accurate.

Two different types of wave gauge arrangement are employed. In the first type,
the gauges are placed on an aluminium bar, where the distance between consecutive
sensors could be varied by an increment of about 2.5 cm. The bar, which is parallel
to the sidewalls of the tank, is shifted slightly relative to the secondary wavemaker to
reduce shadowing effects. Thus, the instantaneous wave elevations could be measured
at desired distances from the secondary wavemaker along the carrier wave propagation
direction. In the second arrangement, wave gauges are located on a circular arch with
a radius of 10 cm, centred at the conical wavemaker. Such distribution of the wave
gauges facilitated measurements at a constant distance from the secondary wavemaker
and at different angles of propagation of the forced disturbance.

3. Theoretical background
3.1. Incorporation of weak dissipation into the Zakharov equation

The irrotational flow of inviscid incompressible deep fluid with free surface at z =
η(x, t) satisfies the Laplace equation for the velocity potential φ

∆φ = 0, −∞ < z 6 η (1)

subject to the kinematic

ηt + ∇xη∇xφ− φz = 0, z = η (2)

and the dynamic

φt + 1
2
(∇φ)2 + gz − s∇

[
∇xη(

1 + (∇xη)2
)1/2

]
= 0, z = η (3)
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boundary conditions at the free surface. Here s is the surface tension coefficient
divided by fluid density, g is the gravitational acceleration, x = (x, y) denotes the
horizontal coordinates, z is oriented vertically upwards, ∇x = (∂/∂y; ∂/∂y) is the
horizontal operator and ∇ = (∂/∂x; ∂/∂y; ∂/∂z). The dispersion relation for surface
gravity–capillary waves is given by

ω2 = kg + sk3, (4)

where ω is the radian wave frequency and k = |k| is the magnitude of the wave
vector. Zakharov (1968) demonstrated that the surface waves problem (1)–(3) allows
a Hamiltonian formulation. Using the Hamiltonian approach, Zakharov derived
an equation which describes the wave field evolution in Fourier space. The two-
dimensional Fourier transform of a function f(x) is defined as

f̂(k) =
1

2π

∫ ∞
−∞
f(x) exp(−ik · x)dx. (5)

A new complex ‘amplitude’ is defined that is composed of the amplitude of the
surface elevation η̂(k, t), and the amplitude of the velocity potential at free surface,
φs(x, t) = φ(x, z = η(x, t), t):

b(k, t) =

(
g

2ω(k)

)1/2

η̂(k, t) +

(
ω(k)

2g

)1/2

φ̂s(k, t). (6)

The amplitudes η̂(k, t), φ̂s(k, t) can be easily obtained from the complex amplitude
b(k, t) and its complex conjugate (Stiassnie & Shemer 1984). Zakharov utilized the
Hamiltonian approach to obtain the evolution equation for the complex amplitude
b(k, t). For our purposes, however, an alternative derivation based directly on the
governing equations (1)–(3) and suggested by Yuen & Lake (1982) is more suitable.
It is assumed that for waves which are sufficiently long so that only quartet (Class I)
resonant interactions are possible, the wave field can be decomposed into a dominant,
slowly varying in time, component B̃, and a small but rapid bound component B′:

b(k, t) =
[
εB0(k, t2) + ε2B′(k, t, t2)

]
exp[−iω(k)t], (7)

where ε is the small parameter of the problem, represented by the steepness of the
carrier wave, ε = k0η(k0), subscript 0 denotes the carrier, B̃(k, t2) = O(1) and the slow
time scale is defined as t2 = ε2t. The near-resonant conditions for Class I interactions
between four waves are satisfied when

k0 + k1 − k2 − k3 = 0, |ω0 + ω1 − ω2 − ω3| 6 O(ε2ω0). (8)

The Zakharov equation for the slow time evolution of the carrier wave of B̃ = εB0 is

i
∂B0

∂t
=

∫∫∫ ∞
−∞
T

(2)
0,1,2,3B

∗
1B2B3δ(k0 +k1−k2−k3) exp[i(ω0 + ω1 − ω2 − ω3)t] dk1dk2dk3

(9)

where * denotes the complex conjugate, Bj = B(kj), δ is the Dirac delta function,

and T
(2)
0,1,2,3 = T (2)(k0, k1, k2, k3) is the interaction coefficient which can be found e.g.

in Stiassnie & Shemer (1984).
To perform a quantitative comparison of the nonlinear wave stability analysis

based on the Zakharov equation (9) with the experimental results, a modification of
(9) that takes into account weak viscous wave damping is performed. The assumption
of weak dissipation allowed Ruvinsky et al. (1986, 1991) to separate the velocity field
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into potential and vortical components. As a result of this decomposition of the
velocity field, a vortical velocity component V ′ in the vertical direction appeared in
the kinematic boundary condition, with an additional equation for the determination
of V ′. Longuet-Higgins (1992) suggested a simplification of the model by Ruvinski et
al. by invoking the boundary layer concept and presenting the surface elevation as

η = η̃ + η′, η′ =

∫
V ′dt. (10)

The boundary conditions are now evaluated at the edge of the potential region η = η̃.
The following modification of (2) and (3) is obtained:

η̃t + ∇xη̃∇xφ− φz = 0, z = η̃, (11)

φt + 1
2
(∇φ)2 + gη̃ − s∇

[
∇xη̃(

1 + (∇xη̃)2
)1/2

]
+ 4νφzz = 0, z = η̃, (12)

where ν is the kinematic viscosity of the fluid. For the wavelengths and amplitudes
considered in the present study, ε = O(10−1) and the following relation holds:

2νk2ω 6 O(ε2). (13)

The boundary conditions (11) and (12) can now be employed instead of (2) and (3),
respectively, in order to derive a weakly dissipative version of the Zakharov equation
(9), following the derivation procedure of Yuen & Lake (1982). Invoking condition
(13), the dissipation appears in the resulting equation for the evolution of a nonlinear
wave at a slow time scale as an additional linear term:

i
∂B0

∂t
=

∫ ∫ ∫ ∞
−∞
T

(2)
0,1,2,3B

∗
1 B2 B3 δ(k0 + k1 − k2 − k3)

× exp[i(ω0 + ω1 − ω2 − ω3) t] dk1dk2dk3 − 2iνk2
0B0. (14)

3.2. The effect of weak dissipation on the linear stability of a wave train

Following Stiassnie & Shemer (1984) and Shemer & Stiassnie (1985), we consider
a near resonating Class I quartet, consisting of a carrier wave with a wave vector
k0 taken twice, and additional waves (sideband disturbances) with the wave vectors
k1 and k2, so that 2k0 = k1 + k2. It is customary to express this three-wave system
through the parameters p and q, where

k0 = k0(1, 0), k1 = k0(1 + p, q), k2 = k0(1− p,−q). (15)

The amplitudes of the sideband disturbances B1 and B2 are assumed to be small, so
that

|B1|
|B0| = O

( |B2|
|B0|

)
= O(ε). (16)

The discretized system of governing equations for such a three-wave system can
therefore be linearized with respect to B1 and B2 and has the following form:

i
dB0

dt
= T

(2)
0,0,0,0|B0|2B0 − 2iνk2

0B0, (17a)

i
dB1

dt
= T

(2)
1,0,1,0|B0|2B1 + T

(2)
1,2,0,0B

∗
2B

2
0 exp[−i(2ω0 − ω1 − ω2)t]− 2iνk2

1B1, (17b)

i
dB2

dt
= T

(2)
2,0,2,0|B0|2B2 + T

(2)
2,1,0,0B

∗
1B

2
0 exp[−i(2ω0 − ω1 − ω2)t]− 2iνk2

2B2. (17c)
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Equation (17a) is decoupled from (17b) and (17c), to the order of approximation
adopted here (its solution for sufficiently short times), so that for ε2ωt� 1 it has the
following form:

B0(t) = B0(0) exp(−iT (2)
0,0,0,0|B0(0)|2t) exp(−2νk2

0t) = B0(0)[(1 + O(ε2ω0t)]. (18)

This allows one to look for the solution of (17b, c) in the following form:

B1(t) = B1(0) exp[−i( 1
2
Ω + δ)t] exp(−2νk2

1t),

B2(t) = B2(0) exp[−i( 1
2
Ω + δ)t] exp(−2νk2

2t),

}
(19)

where Ω = 2ω0 − ω1 − ω2 + 2T (2)
0,0,0,0|B0(0)|2. The value of δ is given by

δ = (T (2)
1,0,1,0 − T (2)

2,0,2,0)|B0(0)|2 ± D1/2, (20a)

where the discriminant D is

D =
[
Ω − 2(T (2)

1,0,1,0 − T (2)
2,0,2,0)|B0(0)|2

]2 − 4T (2)
1,2,0,0T

(2)
2,1,0,0|B0(0)|4. (20b)

It follows from (18) and(19) that the growth rate σi for the ith disturbance, i = 1, 2,
is given by

σi = Im (D1/2)− 2νk2
i . (21)

The value of the discriminant D for the wave system given by (15) can be calculated
for any p and q from (20b). These coordinates therefore conventionally serve as the
demarcation of instability domains of potential wave trains with ν = 0 (McLean 1982;
Stiassnie & Shemer 1984; Gruman 1987). The growth rate σi in this case is identical
for both sidebands. To check the present computational procedure, the results for the
inviscid waves are verified against those published previously, both for the relatively
long gravity waves (Stiassnie & Shemer 1984; Shemer & Stiassnie 1985) and for
shorter gravity–capillary waves (Gruman 1987). In the presence of weak dissipation,
the instability pattern may become quite different from the potential case. A situation
is possible in this case where one of the sidebands is unstable, while the companion
disturbance with a shorter wave vector decays. Moreover, the location of the most
unstable mode may become affected by weak dissipation and does not necessarily
correspond to the three-wave system with a minimum in D.

4. Results of the theoretical model
4.1. Analysis of the instability of gravity–capillary waves

In order to perform a quantitative experimental study of the sideband instability of
Stokes waves, it is necessary to know first the theoretical limits of the domains of
instability and the characteristic parameters of the most unstable disturbance. The
computations based on the model presented in the previous Section are performed for
the whole range of the wavelengths and wave steepness values under consideration.
The dependence of the computed maximum growth rate σmax on the wave steepness
ε = a0k0 is presented in figure 2 for a number of carrier wave frequencies f. In
addition to the wave frequencies that are within the range considered in this study,
computational results are also graphed for a wave with f = 1.77 Hz (λ = 50 cm),
which is long enough to represent a gravity wave unaffected by capillarity. To enable
comparison of the maximum growth rates for different values of f, the values of σmax
in figure 2 are normalized by the corresponding frequencies of the carrier wave. The
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Figure 2. The maximum growth rate σmax as a function of the wave steepness ε
for a number of carrier wave frequencies.

effect of molecular viscosity is obviously more pronounced for the high-frequency
sideband, see (21). Maximum growth rates calculated using (21) are therefore plotted
in figure 2 both for the potential flow (ν = 0), where they are identical for both
sidebands, and for the high-frequency sideband, in the presence of molecular viscosity
(ν = 0.01 cm2 s−1). The computation results are presented for 0 < ε < 0.30. For these
values of the carrier wave steepness, good quantitative agreement exists between the
model results and the full nonlinear solutions (McLean 1982), see Stiassnie & Shemer
(1984).

It is clear from figure 2 that even for the shortest wave considered (f = 9.52 Hz, λ =
2.5 cm), the maximum growth rate is only weakly affected by molecular dissipation.
For longer carrier waves, the viscosity of water can be practically neglected in
computations of σmax. It is somewhat surprising that the growth rates of the most
unstable disturbances of quite short gravity–capillary waves are only insignificantly
modified by dissipation. This can be explained by the fact that the instability growth
rates for these waves, even for relatively low values of the carrier wave steepness are
substantially larger than the effect of dissipation 2νk2

i .
Several peculiar features become apparent from observation of figure 2. First,

for shorter gravity–capillary carrier waves, the maximum growth rate does not grow
monotonically with ε. The values of σmax/ω0 attain their maximum for wave steepness
around ε = 0.1 for f = 9.52 Hz and f = 6.78 Hz. For longer waves, the value of ε
where the maximum in the curve is located gradually increases, and for gravity waves,
represented by f = 1.77 Hz in figure 2, the dependence of the maximum growth
rate on the carrier wave steepness becomes monotonic in the wave steepness range
considered in this figure. The maximum absolute value of the growth rate is attained
for long (gravity) waves at ε exceeding 0.3 (cf. Dysthe 1979). Note also that for
f = 1.77 Hz any difference between the curves computed for the potential flow and
for ν = 0.01 cm2 s−1 practically vanishes.

The results of figure 2 also indicate that for low and moderate values of ε, the short
gravity–capillary wave with f = 9.52 Hz is considerably less stable than the longer
waves. It also appears from this figure that for f = 6.78 Hz, the computed values
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Figure 3. The computed instability domains for the wave steepness ε = 0.1 (inviscid flow).

of σmax/ω0 are extremely low. The theoretical model adopted therefore indicates that
for this carrier wavelength, the Benjamin–Feir instability actually vanishes. These
results are in agreement with the linear stability analysis based on the nonlinear
Schrödinger (NLS) equation (Djordjevic & Redekopp 1977). They have shown that
gravity–capillary waves are stable for the carrier wavenumber range k1 < k < k2.
Here k1 corresponds to the minimum of the wave group velocity, i.e.

∂2ω

∂k2

∣∣∣∣
k=k1

= 0.

The short-wavelength limit of the stability domain is determined by the condition
k2

2s/g = 0.5, which corresponds to second order Wilton ripples. In terms of wave
frequencies, the NLS equation analysis indicates that waves in the range 6.42 < λ <
9.93 Hz are stable. Note that this range includes the wave frequency f = 9.52 Hz,
which in the present analysis appears to be unstable, see figure 2. The reasons for this
discrepancy are discussed below.

Additional insight into the dependence of the Benjamin–Feir instability on the
carrier wave frequency can be obtained from figure 3. The computed instability
domains in the (p, q) plane, as defined in (15), are graphed in this figure for various
frequencies of gravity–capillary waves with steepness ε = 0.1. Since the results of
figure 2, as well as some additional computations that were performed, indicate that
molecular dissipation is of minor importance to the stability of waves studied here,
only waves on the surface of an inviscid fluid are considered in figure 3. Note that the
extent of the instability domains varies considerably with f. The instability domain
for f = 4.86 Hz is similar in shape to that of the Class I instability domains as
reported for deep gravity waves in McLean (1982) and Stiassnie & Shemer (1984).
The most unstable mode propagates in the direction of the carrier (q = 0), The
boundary of the instability domain originates at (p = 0, q = 0), so that there exist
unstable disturbances with frequencies approaching that of the carrier wave.

All other graphs of the instability domains in figure 3 represent wavelengths within
the domain of stability according to the NLS equation analysis. The results for
f = 6.78 Hz (λ = 1.0 cm) and f = 8.27 Hz (λ = 3.0 cm) indicate that instability,
albeit very weak, exists for those waves. This minor disagreement between the present
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model and the NLS-equation-based results may stem from the fact that a narrow
wave spectrum is assumed in the derivation of the NLS equation, while the Zakharov
equation is free of this restriction. The weakly unstable disturbances for f = 8.27 and
f = 6.78 Hz indeed have values of p = O(1), so that the wave vectors in the instability
domain differ significantly from that of the carrier.

The instability patterns for those waves also change notably, compared to that
for f = 4.86 Hz. For f = 6.78 Hz, the shape of the instability domain still resembles
somewhat that of the longer gravity–capillary waves, but the instability is restricted to
a very small area in the (p, q)-plane, detached from the origin of the coordinate system,
and the most unstable mode no longer propagates exactly in the direction of the carrier
(q = 0). The vanishing area of the instability domain for f = 6.78 Hz explains the
extremely low maximum growth rate obtained for this wavelength. For even shorter
waves, f = 8.27 Hz, the instability domain remains very limited in area, and the
growth rate of the most unstable disturbance is still quite low (σmax/ω0 = 0.72×10−2).
The shape of this domain is completely unlike that obtained for f = 6.78 Hz: it is
characterized by relatively large values of q, so that the propagation direction of the
unstable disturbances is in this case quite different from that of the carrier wave.

Qualitatively different results are obtained for f = 9.52 Hz (λ = 2.5 cm), still within
the range of stable wavelengths according to Djordjevic & Redekopp. The quite
strong instability for this wave frequency (cf. figure 2) manifests itself in the area of
the instability domain which is considerably larger in this case than for f = 8.27 and
6.78 Hz. The instability domain in figure 3 for f = 9.52 Hz is detached from the origin
in the (p, q)-plane and its shape is somewhat similar to that obtained for f = 8.27 Hz.
The most unstable disturbances for f = 9.52 Hz also propagate at relatively large
angle relative to the carrier.

The results of figure 3 are in agreement with Gruman (1987). They indicate that
there are two distinct shapes of the instability domains. The gradual transition
between shapes occurs in the wave frequency range where gravity–capillary waves
are essentially stable. For gravity–capillary waves longer than those in the stability
domain, the instability pattern is qualitatively similar to that of gravity waves. For
shorter gravity–capillary waves, the sideband instability pattern due to the four-wave
interactions becomes quite different. At these wave frequencies, each one of the three
waves participating in the nonlinear interaction (the two most unstable sideband
disturbances and the carrier) have different directions of propagation. Since the point
(p = 0, q = 0) does not belong to the instability domain for those waves, there
is a finite difference between the frequency of the carrier wave and the range of
frequencies of the unstable disturbances.

4.2. Computed instability domains for the experimental wave parameters

To enable quantitative comparison of the results of the stability computations with
the experiments, it is advantageous to present the computed instability domains
separately for each sideband. Convenient coordinates for such a presentation are the
propagation angle of the disturbance vs. its frequency. The high-frequency disturbance
in our experiments corresponds to the case when the secondary wavemaker excites
directly the low-frequency sideband disturbance. We denote these cases as the low-
frequency forced experiments. The frequencies f = ω/2π of both disturbances in the
analysis are calculated using (4) and (15). The angles of propagation of the high-
and the low-frequency disturbances relative to the carrier waves can easily be derived
from the known values of (p, q) as θ1,2 = tan−1(±q/1± p), respectively, see (15).

Separate instability domains for the two sidebands are presented in figure 4 for the
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Figure 4. The computed (a) high and (b) low frequency sideband instability domains for the wave
frequency f = 4.86 Hz. Symbols denote the most unstable mode.

relatively long carrier wave with the frequency of forcing of the principal wavemaker
f = 4.86 Hz (λ = 7 cm) and in figure 5 for f = 5.89 Hz (λ = 5 cm). In each figure
results of the computations are presented for the values of the carrier wave steepness
ε for which the experiments were performed. The maximum wave steepness for
each wave frequency is restricted in the present experiments by the appearance of
cross-waves in the tank.

For all values of ε in figures 4 and 5, the most unstable disturbance propagates in
the direction of the carrier. The propagation direction of the high-frequency unstable
disturbances (figures 4a and 5a) does not differ from that of the carrier by more
than 8◦ in all cases. In contrast to that, for the low-frequency disturbances the
deviation of the propagation direction from that of the carrier can be substantially
larger, see figures 4(b) and 5(b). The domains where low-frequency disturbances are
unstable extend to large absolute values of θ, but disturbances with those propagation
directions have vanishingly small growth rate. It thus can be concluded that the wave
field which can be expected in experiments with sufficiently long carrier waves is
essentially two-dimensional.

In general, one of the boundaries of the instability domain in both figures corre-
sponds to the frequency of the carrier wave, and the domains of instability expand
as the wave steepness ε is increased. A notable exception is obtained for the wave
frequency f = 5.89 Hz (λ = 5 cm) and the steepness ε = 0.16. For these parameters
of the carrier wave, the domains of instability for the high and the low sideband
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Figure 5. As figure 4 but for the wave frequency f = 5.89 Hz.

disturbances are detached from the carrier frequency. The value of ε = 0.16 is close
to the wave steepness for which the maximum is obtained in figure 2. The unstable
disturbances for the gravity–capillary waves with high values of wave steepness thus
do not satisfy the assumption of the narrow band and have frequencies which are
quite different from that of the carrier. It also becomes clear from figure 5 that the
decrease in the maximum growth rate with ε in figure 2 corresponds to the ‘shrinkage’
of the instability domains.

Instability domains for three carrier waves frequencies in the range, where they are
stable according to Djordjevic & Redekopp (1977) are presented in figure 6 (f = 6.78
Hz, λ = 4.0 cm), figure 7 (f = 8.27 Hz, λ = 3.0 cm) and figure 8 (f = 9.52 Hz,
λ = 2.5 cm). The results in figures 6 and 7 are presented for three values of the wave
steepness. For f = 6.78 Hz, the computations were also performed for larger values of
ε but the domains of instability at those carrier wave amplitudes actually disappear.
In contrast to figures 4 and 5, the instability domains in figures 6 and 7 for different
values of ε do not overlap, and move away from the carrier forcing frequency with
increasing carrier wave steepness. In comparison with the results of figures 4 and 5,
the domains of instability in figures 6 and 7 are quite small. The instability exists for
an extremely narrow range of frequencies and propagation angles. These results are
in agreement with those of figure 2, which show that for f = 6.78 Hz the growth rates
of the most unstable disturbances are also extremely low. Although the most unstable
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Figure 6. As figure 4 but for the wave frequency f = 6.78 Hz.

disturbances in figure 6 do not propagate exactly in the direction of the carrier,
as is the case for the longer waves, the range of propagation angles of the unstable
disturbances is also limited. In contrast to that, the propagation directions of the most
unstable disturbances in figure 7, f = 8.27 Hz deviate considerably from that of the
carrier wave. Note also that while in both figures 6 and 7 the instability domains are
nearly vanishing, their shapes in these two figures are quite different. In figure 6, the
general shape of the instability domains still resembles that obtained in figure 4 and 5
for longer gravity–capillary waves. As in figure 5 (f = 5.89 Hz) for the wave steepness
ε = 0.16, the assumption of the narrow spectrum is not satisfied in figure 6, and the
instability domains are detached from the frequency of the carrier wave. The same con-
clusion holds for figure 7, but here shape of the instability domains changes notably.

The results of computations of the instability domains for the shorter gravity–
capillary waves (f = 9.52 Hz, λ = 2.5 cm), presented in figure 8, look quite different
from those plotted in figures 4–6, but strongly resemble in shape those of figure 7.
As in figures 6 and 7, the assumption of the narrow spectrum does not hold for this
carrier wave frequency. Unlike figure 7, however, the instability domains in figure 8
are quite wide. This is in agreement with figure 2, which indicates that carrier waves
with f = 9.52 Hz are quite unstable. The computations in figure 8 were performed for
the wave steepness ε = 0.065, for which the experiments were carried out. In addition,
results are shown for ε = 0.10, ε = 0.13, corresponding to the maximum in the curve
σmax(ε) in figure 2, and for a slightly higher value of the wave steepness, ε = 0.14. No
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Figure 7. As figure 4 but for the wave frequency f = 8.27 Hz.

experiments were performed for those relatively high values of ε due to appearance of
cross-waves in the tank. The most unstable disturbances at both the high frequency
and the low frequency propagate at notable angles relative to the carrier. In this case,
the wave vector of the most unstable disturbance of the high-frequency sideband has
an angle θ ≈ 10◦ relative to k0, while for the low-frequency sideband θ is about −20◦.
These results are again in agreement with Gruman (1987). For f = 9.52 Hz, one can
therefore expect to observe in the experiments a three-dimensional wave field, with
the sideband disturbances propagating in directions different from that of the carrier.
Note also that the instability domains, as well as the locations of the most unstable
disturbances, are nearly identical for ε = 0.10 and ε = 0.13. This fact may be related
to the result of figure 2 that for f = 9.52 Hz, the growth rates of the most unstable
disturbances are also very similar for those values of the wave steepness. For slightly
higher value, ε = 0.14, the instability domain ‘shrinks’ in figure 8 again. As was the
case in figure 5 for ε = 0.16, this phenomenon can be related to the fact that for
f = 9.52 Hz, this value of the wave steepness corresponds to the growth rate of the
most unstable disturbance which is beyond the maximum.

5. Experimental results
It is assumed in the theoretical model adopted that dissipation occurs in the

boundary layer at the water–air interface due to molecular viscosity. This dissipation
rate is proportional to the liquid viscosity ν. The temporal decay rate is given by 2νk2,
see (14). The corresponding spatial rate of loss of amplitude is given 2νk2/Cg , where
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Figure 8. As figure 4 but for the wave frequency f = 9.52 Hz.

Cg is the wave group velocity (see e.g. Crapper 1984). To verify that this expression
holds for the present experimental conditions, measurements of the wave amplitude
decay along the tank were performed. The variation of the wave amplitude along
the tank demonstrated that the effective value of the kinematic viscosity, estimated
from the measured rate of decay, is about 1.5 times larger than that of clean water.
This result can be explained by in part by residual contamination of the water
surface. Calculations of the dissipation rate due boundary layers at the sidewalls and
the bottom of the tank performed using the expressions of Kit & Shemer (1989b)
indicate that these mechanisms are negligible compared to the molecular dissipation in
the boundary layer at the free surface for the wave tank geometry and the wavelengths
considered in this study.

The low-pass filtering of the wave gauge outputs at 20 Hz employed in the present
studies eliminated the appearance of both parasitic capillary waves (Longuet-Higgins
1995) and Wilton ripples in the recorded signals. It should be stressed, however,
that the high-frequency ripples were not observed visually in the tank away from
the wavemaker at the locations were the probes are placed. No experiments were
performed at carrier frequencies in the close vicinity of the second and the third order
internal Wilton resonances.

5.1. The experimental procedure

In the experimental approach adopted in the present study, for each value of the
frequency of the forced disturbance, amplitudes of the carrier wave and the sideband
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Figure 9. Typical measured spectra of the wave field for f = 5.89 Hz and ε = 0.08:
(a, b) high-frequency forced disturbances; (c, d) low-frequency forced disturbance.

disturbances are determined from the measured spectra of the instantaneous surface
elevation. The duration of continuous sampling in each experimental run was 80 s, at
a sampling frequency of 100 Hz per channel. The calibration coefficients for each wave
gauge are determined before each series of measurements, so that actual instantaneous
surface elevations at each gauge location could be computed and recorded for further
processing. The frequency spectra of the variation of the measured surface elevations
with time are then computed by applying the FFT procedure. The spectra for each
location have a frequency resolution of about 0.03 Hz. At the beginning of each series
of experiments for the desired carrier wave frequency and amplitude, the secondary
conical wavemaker is removed, and the resulting wave field is measured when only
the principal wavemaker is operating. The exact value of the carrier wave frequency
is determined experimentally from the resulting spectra. The wave amplitude at the
forcing frequency measured by the wave gauge closest to the secondary wavemaker (at
a distance of about 10 cm from the centre off the cone) is used to determine the actual
wave steepness in the particular series of experiments. The secondary wavemaker is
then inserted, and the measurements are repeated for various frequencies of the forced
disturbance. The next sampling is not begun until at least 90 s after the change in
wave conditions.

Two types of measurements are performed for the selected values of the carrier
wavelength and wave steepness. In the first series of experiments, the variation of
the wave field along the tank is studied while in the second series the wave gauges
are placed on an arc of radius of about 10 cm centred at the secondary wavemaker.
Hence, the resulting wave field is measured as a function of the propagation direction
θ of the forced disturbance relative to that of the carrier.

5.2. Instability domains in the direction of propagation of the carrier wave

Typical measured wave amplitude spectra representing various situations encountered
in the experiments are presented in figure 9. The principal wavemaker operates at
the frequency f = 5.89 Hz, corresponding to a wavelength of 5.0 cm. The spectra
of figure 9 clearly show that in the present experiments three distinct components
can easily be identified. The amplitude of each wave component can be estimated
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Figure 10. The amplitudes of the unforced sideband disturbance measured along the tank for
f = 4.86 Hz.

from these spectra. The actual amplitudes are calculated by integrating the measured
power spectra over five spectral bins centred at the corresponding spectral peak. The
carrier wave steepness estimated from the measured spectra is ε = 0.08. In figure
9(a, b) the secondary wavemaker excites waves directly at a frequency exceeding that
of the carrier (high-frequency forced disturbance), while in figure 9(c, d) low-frequency
disturbances are excited directly. In figure 9(a, c) the unforced sideband disturbances
are clearly seen in the spectra, thus indicating that nonlinear quartet interactions are
present for these experimental conditions. When the secondary wavemaker operates
beyond the domain of instability (figure 9b, d) the unforced disturbances are notably
weaker. It should be stressed in this respect that the present experimental procedure
does not distinguish between the bound and the free waves at a given frequency. The
weak peaks beyond the instability domain can therefore be attributed to the presence
of the bound waves.

While the carrier wave amplitude, as well as that of the forced disturbance, are
affected by the nonlinear interactions, the most dramatic evidence of the presence
of instability, from figure 9, is the appearance of a noticeable spectral peak at the
frequency corresponding to the unforced sideband. It was therefore decided to present
the results of the experimental study as the measured amplitude of the unforced
sideband vs. the frequency of the forced disturbance. That is, in the figures that
follow, the abscissa represents the forced frequency of the conical wavemaker, while
the ordinate is the response of the wave field at the unforced sideband frequency.
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Figure 11. As figure 10 but for f = 5.89 Hz.
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Figure 12. As figure 10 but for f = 6.78 Hz.

Determination of the instability domains in the direction of the carrier wave
propagation is performed using three wave gauges located 30, 38.5 and 44.5 cm from
the principal wavemaker. The results obtained at the two carrier wave frequencies
(f = 4.86 Hz, λ = 7.0 cm and f = 5.89 Hz, λ = 5.0 cm) are presented in figures
10 and 11, respectively. For f = 4.86 Hz, measurements were performed for three
carrier wave amplitudes, corresponding to the instability domains computations of
figure 4. For shorter gravity–capillary waves with f = 5.89 Hz, experimental results
are presented in figure 11 for four values of ε, including the relatively high value,
ε = 0.16, where qualitative differences in the instability patterns are obtained in
numerical computations compared to the lower values of the carrier wave steepness.

In figures 10 and 11, the range of frequencies is delineated for which the theoretical
analysis indicates that disturbances propagating in the carrier direction are unstable.
The measured amplitudes of the unforced disturbance within the instability domains
predicted by the inviscid theoretical model are consistently notably higher than those
outside the theoretical instability limits. The agreement between the experiment and
the theory in those figures is both qualitative and quantitative. The effect of widening
the instability domains by increasing the steepness of the carrier wave (cf. figures
4 and 5) is clearly observed also in the experiments. Moreover, the limits of the
instability as derived from the measured amplitudes of the unforced disturbance are
in good agreement with the theoretical predictions for all carrier wave amplitudes at
both wavelengths. Fig 11d clearly shows that the measured amplitudes of the unforced
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Figure 13. As figure 10 but for f = 8.27 Hz.

disturbances indeed increase notably in the two detached domains, in agreement with
computations for ε = 0.16 presented in figure 5.

Results of similar experiments performed for the carrier wave frequencies f = 6.78
Hz, λ = 4.0 cm and f = 8.27 Hz, λ = 3.0 cm are presented in figures 12 and 13,
respectively. For each carrier wave frequency, the results are obtained for two
carrier wave amplitudes. At the lower amplitude of the carrier wave for f = 6.78 Hz
(ε = 0.075, figure 12a), the amplitudes of the unforced disturbance remain van-
ishingly low. This is in agreement with the theoretical predictions of figure 2
and 7, which suggest that the instability for this carrier wave frequency is very
weak. The theoretical computations, however, predict that the instability becomes
even weaker until it fades out completely when the amplitude of the carrier is
increased. The experimental results obtained for ε = 0.13 (figure 12b) are some-
what ambiguous. While the measured amplitudes of the unforced disturbance are
often notably higher than in figure 12a, they are still well below the values ob-
tained for the similar carrier wave steepness for the wave frequency f = 5.89 Hz,
figure 10c. This partial disagreement between the experiments and the theoreti-
cal predictions may be plausibly explained by the appearance of bound waves
in the spectrum. Results of figure 13 (f = 8.27 Hz) are more clear-cut, indicat-
ing that no instability is present at this carrier wavelength for both values of
the wave steepness ε, in full agreement with the predictions of the theoretical
model.
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Figure 14. Angular dependence of the measured amplitudes of the unforced sideband disturbance
for f = 4.86 Hz.

5.3. The angular behaviour of the instability domains

The dependence of the gravity–capillary waves instability on the angle of propagation
of the forced disturbance is studied in figure 14 for f = 4.86 Hz and figure 15
for f = 5.89 Hz. In each figure, results are presented for two values of the wave
steepness. In figure 14a (ε = 0.10), for all forcing frequencies above about 4.5 Hz,
the amplitudes recorded by probe 1, aligned with the carrier wave propagation
direction, exceed those at other locations. Note that the theoretical results of figure
5 indicate that, for the carrier wave frequency f = 5.89 Hz and steepness ε = 0.10,
the forced disturbances at those frequencies propagating in the directions of the
carrier are indeed unstable. At lower forced disturbance frequencies, only sidebands
propagating at angles deviating significantly from that of the carrier can participate
in the nonlinear quartet interactions. For those frequencies, the results of figure 14a
indicate that the unforced disturbance amplitudes measured by the probes positioned
away from the carrier wave propagation direction become higher than those recorded
by the first probe. At higher carrier wave amplitude, corresponding to ε = 0.14, figure
14b, the unforced disturbance amplitudes at the first probe location remain larger
than those measured by the other probes for all frequencies above about 4 Hz. This
trend is again in agreement with the theoretical predictions of figure 5, where the
lower boundary of the instability domain for the zero propagation angle is shifted to
lower frequencies compared to ε = 0.10

Similar qualitative and quantitative agreement between the computed instability
domains and the experimental results is observed for both amplitudes for the wave
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Figure 15. As figure 14 but for f = 5.89 Hz.

frequency f = 4.86 Hz (figure 15). Here again, at all frequencies of the forced
disturbance within the domain of instability (approximately 4 < f < 6 Hz), the
amplitudes of the unforced sideband are maximum at the first probe location for
f > 6 Hz, the results of figure 4 indicate that instabilities propagating at small angles
relative to the carrier are still unstable. The domain of instability becomes very narrow
and the instability effectively disappears for frequencies exceeding approximately
6.5 Hz. The experimental results of figure 15 are in general agreement with these
theoretical calculations. When the conical wavemaker is operating at frequencies
below about 3.6 Hz, the measured amplitudes in the direction of the carrier become
notably lower than at those in the alternative directions, as can be expected from
figure 4.

Experiments on the shortest wave in the present study (f = 9.52 Hz, λ = 2.5 cm)
were particularly difficult to perform, mainly due to two complicating factors. First, at
this high frequency of forcing subharmonic cross-waves appeared at the wavemaker
at a relatively low amplitude of the wavemaker displacement. The largest amplitude
of the carrier wave which could be obtained without cross-waves distorting the wave
field corresponds to the wave steepness ε = 0.065. The absolute values of the surface
displacement for these values of ε and f are very low. Second, these short waves
decay rapidly along the tank, and since the amplitudes are so small even close to
the wavemaker, no meaningful measurements were performed along the tank for this
carrier wavelength. Experiments therefore were carried out only as a function of the
angle of propagation of the disturbances.
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Figure 16. As figure 14 but for f = 9.52 Hz.

The results of these experiments are summarized in figure 16. The absolute values
of the amplitudes of the unforced disturbance in this figure do not exceed 0.025 mm.
It should be stressed, however, that relative to the amplitude of the carrier, the wave
steepness of the unstable disturbances in figure 16 is higher that those measured for
the longer carrier waves. The results of figure 16 support in general the theoretical
predictions. The instability domains as obtained in these experiments are detached
from the carrier frequency. Moreover, the results of figure 16 indicate that the unforced
disturbances measured in the propagation directions of the forced disturbance different
from that of the carrier are relatively stronger than those measured at lower carrier
frequencies, in particular for the low frequencies of the forced disturbance. These
results confirm qualitatively the model predictions presented in figure 8. Due to
very small amplitudes in these experiments, it is pointless to consider quantitative
agreement.

6. Concluding remarks
The purpose of the present study is to perform an extensive quantitative examina-

tion of the Benjamin–Feir instability patterns of weakly nonlinear gravity–capillary
waves. This study combines the theoretical analysis of the linear stability of these
waves to the sideband disturbances with a corresponding experimental investiga-
tion of this problem. The present study is unlike the previous investigations of the
instability of the surface waves in two important aspects.

First, a different experimental approach is adopted here. In most experiments on
surface wave instability, a carrier wave is generated directly by mechanical means, and
the spatial growth of the most unstable disturbances originating from the background
noise is then estimated. In contrast to those studies, in the present experiments a
controlled omni-directional sideband disturbance is excited directly by an independent
wavemaker. The spectra of the surface elevation are then obtained. The presence of
an observable second sideband disturbance in these spectra, which is not excited
directly, serves as a criterion for the existence of four-wave nonlinear interactions.
This experimental procedure allows one to determine not only the most unstable
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disturbance, as in other experimental studies, but also to delineate the instability
domains.

Secondly, theoretical computations in this work are performed in parallel with the
experiments. This approach allows the selection of the experimental parameters for
which the measurements are preformed on the basis of the results of the theoretical
model adopted. This model is based on the Zakharov integro-differential equation,
which describes nonlinear four-wave interactions in the wave-vector space. The model
equation is modified to include weak dissipation due to the viscous boundary layer
at the free surface in the presence of molecular viscosity. Both quantitative and qual-
itative comparison is performed between the experimental results and the numerical
solution of the model equations.

The present study includes weakly nonlinear gravity–capillary waves in the wave-
frequency range 4.86 6 f 6 9.52 Hz. The results of the theoretical analysis indicate
that in this range of frequencies, the dissipation in the boundary layer on the free
surface due to molecular viscosity has only a minor effect on the sideband wave
instability. Further computations of the instability domains and the parameters of the
most unstable disturbance are therefore restricted to the inviscid model only.

Gravity–capillary waves in the selected range of wave frequencies include a domain
in which these waves are stable to sideband disturbances, as follows from the analysis
based on the NLS equation (Djordjevic & Redekopp 1977). The present theoretical
study employs the Zakharov model equation, which is free of the narrow-band
approximation of the NLS equation. The results of the stability analysis of gravity–
capillary waves based on the Zakharov equation are in agreement with the conclusions
of Djordjevic & Redekopp, as long as only disturbances which satisfy the narrow-
band approximation are considered. The present numerical study confirmed the
existence of a range of gravity–capillary waves that are essentially stable. It was
found, however, that this range is somewhat narrower than previously assumed, and
waves within the domain of stability according to the NLS-equation-based analysis
may become unstable to disturbances which have wave vectors quite different from
those of the carrier wave. For short gravity–capillary waves in the range of wave
frequencies considered here, most unstable disturbances and the carrier wave all
propagate in different directions, so that the resulting wave field is essentially three-
dimensional. While the shape of the instability domain for longer gravity–capillary
waves resembles that of gravity waves, for shorter wavelengths it is quite different.
The gradual transition between the two distinct shapes of the instability domains
occurs in the range of carrier wavelengths where the sideband instability practically
vanishes.

Another peculiar feature revealed in the stability analysis based on the Zakharov
equation is a non-monotonic dependence of the growth rate of the most unstable
disturbances on the carrier wave amplitude. This phenomenon is more pronounced
as gravity–capillary waves become shorter. The present study demonstrates that the
decrease in the maximum growth rate, starting from a particular wave steepness
which is determined by the carrier wave frequency, is accompanied by a ‘shrinkage’
of the instability domain in the wave-vector space. This ‘shrinkage’ is characterized
by detachment of the boundaries of the instability domain from the carrier wave
frequency. The assumption of a narrow spectrum thus does not hold for these
conditions.

The experiments performed in the present study confirm these theoretical con-
clusions qualitatively as well as quantitatively. The domains of instability for the
high-frequency and the low-frequency sideband disturbances, determined experimen-
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tally from measurements of the spectra of the surface elevation performed along the
propagation direction of the carrier wave, agree well with the model computations for
all values of wave frequency and steepness. Moreover, experiments performed for low
frequencies of the forced disturbance indeed revealed an essentially three-dimensional
wave field, again in agreement with the theory. It should be mentioned here that
somewhat ambiguous results were obtained for the wave frequency f = 6.78 Hz
(λ = 4.0 cm), where no clearly defined ‘shrinkage’ of the instability domain with the
carrier wave steepness, as predicted by the theoretical model, could be observed in
experiments.

In summary, it can thus be concluded that the Zakharov equation, which is not
subject to the narrow-band approximation, represents a convenient model for studying
three-dimensional surface waves. When applied to the study of the linear stability
of weakly nonlinear gravity–capillary waves, it illuminates important new details of
instability patterns. The corresponding experimental investigation demonstrates the
accuracy of the conclusions based on the application of the Zakharov equation.

We thank Dr Chapman for his help with the capacitance wave gauges. This work
was supported in part by a grant from the Israel Science Foundation.
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